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The basic principle of UP, as a method to solve hyperbolic equations, is re-examined from 
a different viewpoint and the scheme is modified into an explicit finite diirerence form. The 
method gives a stable and less diffusive result for square wave propagation compared with 
FCT and a better result for propagation of a sine wave with a discontinuity. The scheme is 
extended to nonlinear and muiti-dimensional problems. 0 1987 Academic Press, Inc 

I. INTRODUCTION 

In a previous paper, we proposed a less-diffusive and s 
interpolated pseudo-particle (UP) [ 11, for solving a linear 
the scheme, a quantity within a mesh is interpolated by a polynomial. Since 
the gradient of the quantity is a free parameter, the scheme is completely different 
from the spline method [2, 31; in the latter method, the gradient is calculated by 
assuming continuity of the quantity, the first derivative and the second derivative of 
the quantity at the mesh boundaries, and is independ of the equation. con- 
trast, the first derivative in the CIP is calculated by model equation r the 
spatial derivative and is chosen so that it is consistent the time evolution of the 
given equation. 

Since the CIP does not use the “limiting” procedure employed in the FCT [474, it 
oes not sutfer from a fictitious clipping in a triangular wave. This was 

ted in propagation of a sine wave with a discontinuity in the previous 

sent paper gives generalization of the CI scheme to nonlinea 
-advective terms and to multi-dimensional problems. In Sectio 

basic principle of the CIP is briefly explained from a different viewpoint 
previous paper El]. In Section III, the CIP is extended to nonlinear pr 
Section IV, one-dimensional shock tube problems in plan metry are used for 
test runs. The CIP and various other schemes are corn with the analytic 
solution. In Section V, the scheme is extended to a twQ-dime~si~~a~ co~~g~~at~o~, 
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356 TAKEWAKIAND YABE 

with a few numerical examples. The CIP scheme is straightforwardly extended to 
multi-dimensional problems by time splitting. 

II. BASIC PRINCIPLE OF CTP 

In this section, the basic principle of the CIP algorithm is briefly explained by 
comparing it with other schemes. For this purpose, let us use a simple hyperbolic 
equation 

aflat + c aflax = 0 (1) 

where c is constant. Equation (1) is integrated over an interval 
(xi-l/22 xi+lp), (t,, t,+l) to obtain 

AFi + 112 = s x’*“2 - f”(x) dx, 
~,~,,z-cAf 

(2’) 

where the superscript n and the subscript i on f mean the value off at t = t, and 
x = xi, respectively. In the right-hand side of Eq. (2), the profile off is assumed to 
remain rigid during the interval At ( = t,+ 1 - t,) and to propagate by a distance 
cAt Cl]. 

It is interesting to examine the assumptions made on the spatial profile off(x) 
for the integration of Eq. (2) in various schemes. In an example given in Fig. 1, let 
the solid line be an actual profile of a wave, the dashed line be an employed profile 
in a scheme given below, and the shaded areas be AF. At first, let us begin with a 
centered difference scheme. The assumptions made are as follows; 

(1) left-hand side: f(x) is constant and s fdx = f. Ax, 

(2) right-hand side: although f(x) is linearly interpolated as shown by the 
dashed line in Fig. la, only the values at x = xi+ 1,2 are used to estimate AF; that is, 
the incoming and outgoing fluxes AF are given by the shaded rectangular areas and 
hence AFi,,,,=fi,1/2CAt=(fi+fi+1)CAt/2. - - 

This leads to 

.f;+'-fY= -(@)(L+l-"Ll), (3) 

K being c At/Ax. 
The second example is the Lax-Wendroff scheme ES], where the assumptions 

employed are as follows; 
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FIG. 1. Schematics of flux calculation in (a) the centered finite difference and (b) Lax-Wendroff 
schemes. 

(1) left-hand side: the same as the centered difference, 

(2) right-hand side: f(x) is linearly interpolated as shown by the dashed line 
and the fluxes AF are given by the shaded areas in Fig. lb and ence 
A%;,* 112 = esl+fii!,cdt/2f(fi-f,,,)CZdt2/2. 

This leads to 

which can be modified into a two-step form as in the two-step ~ax-We~d~o~ 
scheme. 

The above derivation clearly shows the assumptions made in the schemes; it is 
interesting to see that the Lax-Wendroff scheme is only a slight modification of t 
centered difference as seen from the comparison between Figs. la and b. 
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FIG. 2. Propagation of a square wave after 1000 time steps, K being 0.2, 1000 cycles, with up-wind, 
Friedrichs-Lax [6], leap-frog, Lax-Wendroff, Fromm 171, compact-differencing [S], phoenical- 
SHASTA [9], and CIP. 
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ther than those schemes, there exist a number of schemes availa 
shown to be useful. In Fig. 2, some of those schemes are introduc 

with a typical problem, square wave propagation with K = 
shown after 1000 steps. In the leap-frog and the Lax 
overshooting and the so-called phase error are significant. Let us 
of this error. In both schemes, although the spatial profile of S is linearly in 
plated and AF is calculated based on the profile shown in Fig. 1, the profile on 
left-hand side of Eq. (2) is assumed to be flat. If dFj+ 1,2 is less than oJ’- l,z for 
c> 0, the value f, in Fig. 1 should always increase according to Eq. (2) and 
overshooting should occur; the spatial profile off on the left-hand side of Eq. (2) is 
constant (f= fi) and hence AFiF,_ 1,2 - AF,, 1,2 

In contrast, if the spatial profile off on the 
described, overshoot does not occur as illust 
lines show the profiles of a wave at t = t, and t,+ 1 = 1, + c 
going and incoming fluxes (Eq. (2’)) are given by the sh 
C’, respectively; C’ is the same as C. If the real profiles a 
on the left-hand side of Eq. (2), Eq. (2) 
ference between the outgoing and incoming fluxes, which is given by the area A, fill 
the area B without causing any overshoot. Consequently, it is essential to predict 
correctly the profile within a mesh at an advance time t=l,+,. In t 
[ 10, 111, a number of particles in a line represent a spatial profile off: 33 
evolution of the spatial profile, which is only a spatial translation by c 
present case, is well described by the particles’ movement; the spatial d~st~~~~ti~~ of 
the particles after they move gives the spatial profile offat e next time (t = t, + 1 ). 
If it is possible to imitate this movement of many particles a simple f~~cti~~, it 
will provides a stable and less-diffusive scheme. 

FKZ. 3. The basic principle of CIP. The solid and dashed lines mean the profiles at i= f, and 
f = t, + i, respectively. Both the area A’ and the difference between the outgoing and incoming fluxes 
(A = A + c’ - C) are used to fill the area B. 
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In the CIP method, the spatial profile off within a mesh is approximated by a 
cubic polynomial. Then the integration on the right-hand side of Eq. (2) is the same 
as that due to a particle’s translation in space by c At. At the next time step (t,+ i), 
that is, after the profile moves, a new polynomial within a mesh is required in order 
to calculate the term on the left-hand side of Eq. (2). Since the boundaries of an old 
polynomial shift by c At from the cell boundaries, the polynomial at t = t, cannot 
be used as the profile of the quantity within a mesh ‘at t = t,, i . Hence, a new cubic 
polynomial must be generated to approximate a new profile as well as possible. 

In ordinary cubic-spline interpolation, continuity of the value f, the first 
derivative f', and the second derivative f" is required to generate the piecewise 
cubic polynomials from the data given at some discrete points, This procedure is 
not suitable for the present problem, because the profile generated by the method is 
not consistent with the given equation. Even in recent work on spline interpolation, 
this physical requirement was neglected and the efforts were limited to constructing 
well-posed and monotonic splines [Z, 31. The CIP method relaxes the requirements 
on continuity, that is, requires continuity only off and f’ at the mesh boundaries. 
Then f and f' at some discrete points are used to generate the piecewise cubic 
polynomials. The additional free parameter f' offers a tool to approximate the par- 
ticle’s movement as mentioned in the previous paragraph. This can be done by 
calculating the time evolution off’ by the equation 

afyat+c afyax=O, (1') 

as well as that off by Eq. (1). In the previous paper [l], Eq. (1’) was not solved by 
the difference method but it was proposed to use the first derivative of a cubic 
polynomial f"(x) at x = xi - c At for fin+ ‘; this corresponds to the translation of 
the profile (f”(x)) by c At. 

Here, we summarize the finite difference form of the CIP as 

H;+‘+Gy+‘=Hy+G;-(AF,+,,,-AFip,,,)/Ax, 

Hi= l/192( 18fi+ 1 + 156f, + 18fii- I), 

(54 

(5b) 

G, = 5/192(f;_ 1 -f;+ i) Ax, 

AFi + 112 = ( - 1c/8 + k-‘/8 + 7c3/6 - 7c4/4) f:“+ 1 Ax2 

+ (7~18 + rc2/8 - rc3/6 - 7c4/4) f ;” Ax2 

+ (lc/2 - 3lc2/4 + ~“/2) f ;+ 1 Ax 

+ (K/2 + 3K2/4 - rc4/2) f; Ax. 

(5c) 

(5d) 

When all f r and f i” are given, the value of the right-hand side of Eq. (5a) is 
calculated. However, both y+ ’ and f 'n+ ' cannot be calculated at once from this 
equation alone. Thus f ‘n + ’ is determined by Eq. (1’) as 

fin+l= f ‘(xi - c At, t,). (6) 
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ence the equation which must be solved is the tridiagonal matrix for ,fi + r, J<, and 
: at t= tn+l in Eq. (5a). Since the solution Eq. (6) is only an approximate one, 

it will depart from the real solution after a long time and hence recorrectio 
required to adjust it to the value fi; in the previous paper [ 11, this recorrecti~~ 
done once every 50 steps. 

efore closing this brief review, we must make an important comment in solving 
(5a). Since tridiagonal inversion is slow when i is employed in vector 

machines, it should be avoided in the code. This can be 
Eq. (5a) is rewritten as 

H;+‘=f;+‘+B,(n), pa) 

ii,(n)=(3/32)(~~+,-2~~+~~,). 

Since A is smaller by a factor of & than f, a rough approximation can be used in 
estimating i”;T. Thus, the quantities having - are calculated by shifting as in Eq. (6) 
because Eq. (1) is the same as Eq. (1’) except for the difference of f an 
According to this equation, 

Tj=f(xi-cAt, fJ. 68) 

Consequently, the equation to be solved is 

fr+‘=H:-i7r,(n)+C:-G:+l 

- (AFi+ 112 __ Af', ~ 1/2)/AX, (9) 

instead of Eq. (5a). We found that Eq. (9) gives the same resuh as Eq. (5a) and it is 
used in Fig. 2. 

III. GENERALIZED ONE-DIMENSIONAL CLP 

A large class of equations can be written in the form 

aflat+ a(fu) g. (fOi 
ere f and g can be vector quantities. The inhomogeneous term g includes, for 

example, the pressure work in the hydrodynamic equation and the heat conduction 
in the energy equation and so forth. Furthermore, u is sometimes written in terms 
off and hence Eq. (10) becomes a nonlinear equation. 

In this section, we extend the CIP algorithm to the equat given in Eq. (1 
The algorithm is divided into two phases, the Eulerian and t Eagrangian phases 
as in the PIC and SOAP codes. 

1. Eulerian Phase 

Equation (IO) is solved without the advection term 

fi*=f;+gydt. 
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The CIP algorithm needs information about the first spatial derivative off: In the 
previous paper [ 11, we proposed to use the equation 

afyat=agjaX, (12) 

for this purpose. We do not need to use an elaborate difference scheme in equation 
because of the factor & in Eq. (5~) and hence Eq. (12) may be solved with a cen- 
tered finite difference. Although Eq. (12) works well, another simple procedure is 
preferable for general purposes because ag/dx becomes a third order derivative if g 
is the heat conduction term and is written, for example, as a’f/ax*. Here, we 
propose to use 

fl*=f:“+(f,*,1-fi*-1-fr+1+fl-1)/2Ax, (13) 
Although this procedure is the same as Eq. (12), the procedure is greatly simplified; 
only the values f * given by Eq. (11) are used. Furthermore, the procedure offers 
another advantage. In the coupled hyperbolic-parabolic equation 

aflat+afujax=Da2flax*, (14) 

the spatial derivativef’ can be advanced in time by Eq. (13) after the nonadvective 
term is solved implicitly as 

fi” =f; + DAt/Ax*(fj++ 1 - 2f,+ +fi”- 1). 

Thus the CIP can be used even if DAt/Ax* % 1. 

(15) 

2. Lagrangian Phase 

In this phase, the advection term is calculated by the CIP algorithm as given in 
Eq. (5c), (5d), (6), (7b), (8) and (9), but K= xi= u~+~,* At/Ax is now space-depen- 
dent, and f”, f’” in Eq. (9) are replaced by f*, f’*. The shifting process as in 
Eqs. (6) and (8) can be done by the spatial translation of the cubic-interpolated 
profile f*(x) by ui At as 

~=a,X3+b,X2+f:~‘,X+f~-,, (16) 

f(n+‘= 3a,X* + 2b,X+ f I?, , (17) 

where 

X= Ax - ui At, 

ai=(f~*+f~Tl)/A~2-2(f~-f,*_l)/A~3, 

hi = 3(f 7 -f i”- JAx* - (f ;* + 2f ;” ,)/Ax. 

(18) 

(19) 

(20) 

IV. SHOCK WAVE PROPAGATION IN PLANE GEOMETRY 

In this section, the CIP algorithm is applied to the hydrodynamic equations; 
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splat + apujar = -~PUJV, 

am/at + i3mular = -aplar - 6i~4/~, 

aqat + ah/& = -apular - 6(~+ ~3) uIy, 

P = (Y - 1)G-m42), 

where p, m, E, U, and p are the density, momentum, total energy, velocity, and 
ssure, respectively, and y is the specific heat ratio. These equations can be 
plane, cylindrical, and spherical geometries by letting 6 be 0, 1, and 2, re 

tively. In this section, the problem is limited to a pla 
The scheme proposed in Section III is checked 

problem: the initial condition is p = 1, E= 1 for the le ost 100 zones and p = 0.5, 
E= 0 for the other zones; u = 0 and y = 513 in al solutiora Qf this 

roblem is given in Appendix. As is well known, overtaking occurs a 
there is no dissipation term in Eqs. (21). In the dis 

should distinguish the nonlinear problem from the linear one. In the linear problem 
CIP algorithm does not need any dissipation even at a steep gradient region. 

s is due to the fact that the CIP scheme tries to correctly solve the 
equation. The situation becomes different in the nonlinear problem; the dissipation 
term is physically required in order to obtain a single-valued function. an 
schemes use it whether it is explicit or implicit. 

The three major forms of explicit numerical dissipation are the arti~~iaI viscosity, 
the “FCT [4] and the “hybrid” Cl31 schemes. The limite 
leads to an incorrect result as pointed out in the review by 
hybrid scheme uses a diffusive scheme at the shock an 
other regions. In this paper, all three dissipation methods are examined. 

i. Art~jkial Viscosity 

An artificial viscosity of the form [l2] 

Q=Ql+Q*> 

is used in the pressure term in Eqs. (21b) and (21~)~ where 

if au/ax < 
otherwise ’ 

(22.) 

(23a) 

re G, means the sound velocity and a is an adjustable parameter of order unity. 
e result with the CIP method after 800 time steps is shown in Fig. 4a. Here, a is 

set to 1.0 and At is fixed to 0.1 with Ax = 1.0. Slight overshoots still re 
the shock front and the contact surface. For comparison yticat solution is 
shown by the dashed line in the figure. It should be note e value a = 1 .O is 
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FIG. 4. The shock tube problem in a high Mach number regime using (a) CIP (artificial viscosity), 
(b) CIP (hybrid), (c) phoenical-SHASTA, (d) MacCormack, and (e) up-wind schemes. 

quite small compared with that used in other schemes; in Fig. 4d the result 
obtained with the MacCormack scheme [15] is shown, a being the same as in 
Fig. 4a. 

ii. Hybrid Scheme 

For a flux AF in Eq. (9), the upstream flux 

AFi t 112 = Q-T if ui+ 1,2 > 0 

hf-i*,l otherwise (24) 

is used instead of the flux (Eq. (5d)) in the region, where 

aulax<O, uap/ax<o, (25) 

is satisfied. Equation (25) only tracks the shock front well. It should be noted that 
only AF is changed while the other CIP algorithm is not changed. The result with 
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this method is shown in Fig. 4b. Compared with Fig. 4a, the contact dis~o~t~~~~t~ 
becomes slightly diffusive and the oscillation occurs in t e area where the velocity is 
constant ahead of the expansion region. This oscillation is due to 
switching of Eq. (24) and is improved if (ui+ I - ZQ)/\U,+ 1 + uil < 0.05 is use 
of (u,., I - ui) < 0 (au/ax < 0). The diffusion at the contact discontinuity IS 

iffusion by Eq. (24) in the initial phase. However, the profile at the shock front is 
etter than that in Fig. 4a. As shown in Fig. 4e, the upwind scheme alone cannot 
reduce such a sharp discontinuity at the contact surface. 

Since it is of no use to incorporate the limiting procedure with the CT 
only makes the scheme complicated, the “phoeui~al-S~ASTA’9 [9] scheme is used 
for comparison and its result is shown in Fig. 4c. The steepness of the shock front is 
almost the same as that by the hybrid CTP, while the contact dis~o~ti~~ity becomes 

iffusive. Although no overshooting occurs at the shock front, the 
the shock wave is unfortunately larger by about 5% than the an 
. It may be possible to use a different limiting procedure, for example, the 

osed by Zalesak [16]. However, it is true that we must be careful in 

The test problem given above is a special one because the ach number of the 
shock wave is infinite. It is worthwhile to test the scheme in a lower ach number 
regime. Figures 5 and 6 give other examples: the initial condition is = a> E=2,5 
(p = 1) for the leftmost 100 zones and p = 0.125, E= 0.25 (p =O.l) for the other 

and y = 1.4 in all zones and dx = 0.01. This example was used in Sod’s 
. Here, open circles are the result with the CHP and the solid line shows 

the analytical result, which is given in Appendix. In Fig. 5, the artificial viscosity is 
of the type given in Eq. (23). Ahhough the contact discontinuity is s~~~essf~~~y 
described, the shock front is quite diffusive. This behavior is attributed to the first 
order viscosity given by Eq. (23a). Since in Fig. 4 the pressure in front of the shock 
wave is zero, no significant diffusion occurs there. In contrast, in Fig. 5 .k SOLand 

speed in front of the shock wave is as fast as that behind the shock wave hence 
causes diffusion there. This diffusion can be reduced as shown in Fig. 0 if C, in 

. (23a) is replaced by jul, since u is zero in front the shock wave. 
From these test problems, it is clear that the C can describe sharp discon- 

tinuities without any special techniques except for the shock front. Associate 
the shock front, further improvement is presumably expected with a different 
artificial viscosity or other techniques that we have not tried. 

t is ~e~era~~y known that a one-dimensional scheme c be easily extende 
ate-Dimensions by using the time splitting technique. wever, this technique 

should be applied to the CIP with care because the CHF method uses the gradient 

581!70,,?-7 
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FIG. 5. The shock tube problem in a low Mach number regime with CIP; the artificial viscosity in 
Eq. (23) is used. “Energy” in the right-bottom figure means the specific internal energy [ =p/p(y - l)]. 

of the dependent variable as a free parameter. For instance, let us consider a two- 
dimensional convective equation such as 

aflat+c, afjax+c, aflay=o, (26) 

where c, and cY are the velocities in the x direction and the y direction, respectively; 
now both are temporarily taken to be constant. The time splitting techniques means 
that Eq. (26) is split to be 

.A = Q) f’, (274 

fl” = J%)fi, (27b) 
where L(i) is an operator of any scheme which gives the solution of the equation 

aflat + c>. afjan = 0. (28) 
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FG 6. The same problem as in Fig. 5 with CIP but C, in Eq. (23aj is replaced by lu/. 

IIn the ClP scheme, Eq. (27) should be modified, because the scheme needs the 
information on the spatial derivative of jI That is, in solving Eq. (27b), Eq. (9) 
should be applied to the y direction with the aid of Eqs. (5~1, (5d), (61, (7b), and 
(8). However, afii3y is not yet known because in Eq. (27a) only 8fiax is ca~c~~atcd 
according to Eq. (6). Consequently, some method is required 
order to clarify the computing process, let us introduce a “61 

which represents the process given in Eqs. (5c), (5d), (6), (7b), (8), and (9). 
using this expression, Eq. (26) can be solved as 
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(i) = C(x) (,‘::), 
(3Ob) 

(3Oc) 

P *+I = S(y, x) p, (3Od) 

where p = aflax and q = aflay. 
Here the operator S(A, ,u) gives the solution of the equation 

a/at[aflapl + cj. a/an[aflapl = 0 (,u, I = x or y, but ,U # A). (31 Y9 
That is, the spatial derivative offin some direction is convected toward the perpen- 

dicular direction. In the calculation described below, we found that the result is 
insensitive to the method used to solve Eq. (31) and hence the donor-cell-type finite 
difference scheme is used. 

Figure 7 shows the propagation of a square wave in the direction at an angle of 

Ia) 

20 meshes 

c---- 50 meshes - 

(b) 

FIG. 7. Linear wave propagation in the direction 45 degrees from the axis; (a) zones used, (b) the 
initial profile, and (c) the profile after 1000 time steps. 
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45” to the axis. The parameters used are Ax = Ay = LO, c, = cp = 1.0, an 
and the figure shows the profiles at the initial step and after 1000 
gradient correction was inserted in the initial 10 time steps and once eve 
as in the previous paper [ 11. Thus, the CIP algorithm has been extended 

to two-dimensional problems by applying se¶uentia~ly one-dirn~~s~o~a~ 
orithms. This procedure has a great advantage because the subroutine for 
solver can be used in any number of dimensions and hence the program is 

largely simplified. This scheme works well also for the solid body rotation test 
applied to Zalesak’s fully multi-dimensional FCT [16]. Figure 8 shows 
at an initial time and after one revolution with the CIP; the conditio 
calculation are all the same as those in Zalesak’s test run. It should be 
the older form of FCT [4,9] cannot reproduce the result shown 
method can give a similar result to the Zalesak’s method in less CPIJ time. 

+----I 00 meshes 

FIG. 8. Solid body rotation as in Ref. [16]; (a) zones used, (b) the initial profile, (c) CTP without 
gradient correction [ 1] after one revolution, and (d) CIP with gradient correction. 
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VI. CONCLUSION 

In this paper, we have re-examined the basic principle of the CIP from a different 
viewpoint and found that the scheme can be modified into an explicit difference 
form; hence the scheme can execute efficiently on vector machines. The scheme was 
extended to nonlinear and multi-dimensional problems. In the nonlinear problem, 
the flux switching at the shock front gave a satisfactory result for a one-dimensional 
shock tube problem, although a further improvement should be expected by choos- 
ing a better dissipation term. The CIP scheme proved to be straightforwardly exten- 
ded to multi-dimensional problems by successive application of one-dimensional 
CIP schemes; hence the problem in any number of dimensions can be solved by the 
subroutine for the one-dimensional CIP. 

APPENDIX 

In order to give a concrete example, it should be better to summarize the Rieman 
problem here, although it is available in literature. Figure 9 represents the con- 
figuration used in this problem. Figure 9a shows the initial conditions; a diaphram 
is placed at x = 0 between the regions 1 and 5. At t > 0, the profile will be modified 
into that in Fig. 9b. 

If the Mach number M of the shock wave located at x=x4 is defined by use of 
the isothermal sound speed (p/~)“~ at the region 5, the Rankine-Hugoniot relation 
leads to 

a 
Region 1 Region 5 

PI 

b 
Region 1 / Region 2 1 Region3iRegion 41 Regmn 5 

I I I I I 

FIG. 9. The Rieman problem: (a) the initial condition, (b) the profile at f >O. 
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p4 2W-(y-1) - 
ps- ytl ’ 

p4- WlW 
z-(Y-l)M*+2Y 

2(&P-y) ps l/2 

U4=(Y+l)M ps ( 1 

At the contact surface (x=x,), the pressure and the velocity should be con- 
tnnuous. Thus, 

Ps = P4, iA51 

In the adiabatic expansion region (region 2), a simple relation is derived for a 
simple wave; u = u(p), that is, u is a single-valued function of p. After dtl/dr and 
au/at are transformed into (du/dp)(ap/ i% and (du/dp)(ap/at), Eqs. (21a) an ) 
reduce to an equation 

e function u(p) satisfies a relation 

This last expressions gives 

Equation (A6) means that the rarefaction front (x= x1) and the boundary x=x1 
move with the velocities - (ypl/pl)‘12 and u3 - (yp3/p3)li2, respectively. 

Since the adiabatic relation 

Phi = hIPlY (A9) 

holds, ~4~ is related to p3 as 

When Eqs. (Al) and (A3) with (A4) and (A5) are substituted into Eq. (AX 
obtain the relation which determines the Mach number 

In Table I, the numerical values used in Figs, 4 and 5 are summarize 
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TABLE I 

Fig. 4 Fig. 5 

PI 
PI 

PS 
PS 

M 
Eq.(All) 

shock speed 
U) = uq 

Eq. (A3) 
P,=P4 

Eq. (AlI 
P4 

Eq. WI 
P3 

Eq. (A9) 
Speed of x = x2 

u3 - c3 
- 

Speedofx=x, 

-cl - 

1.4 
1.0 
1.0 
0.1 
0.125 

1.958 cc 
1.751 0.7924 
0.9266 0.5943 

0.30228 0.2354 

0.2654 2.0 

0.4260 0.5355 

0.071 -0.2616 - 

1.183 - 

5 
s 
1.0 
0.0 
0.5 

1.054 
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